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In this paper we discuss calculations done to study the measurement precision required 
in the measurement of the quadrupole strength. Our analysis shows that a measurement 
precision of 5 units or better should be maintained. 

I. INTRODUCTION 

The Fermilab Main Injector (FMI) will use 128 recycled 84” long quadrupoles from the 
Main Ring. The FM1 will also have newly constructed 100” and 116” quadrupoles of similar 
design. We plan to measure the strength and multipoles of all of these quadrupoles magnets 
before they are installed in the ring. The dynamical aperture of the FM1 depends on the 
variation in the quadrupole strength and the octupole component present in the magnetic 
elements. Using the previous measurements of the Main Ring quadrupoles we know that 
these quadrupoles have a large octupole component (about 5 Units) and the variation is the 
quadrupole strength has a sigma of 24 units[l,2]. In this note we have studied the required 
measurement precision for the quadrupole strength using TEAPOT[3] and a monte carlo 
program. This precision is required to maximize the dynamical aperture and minimize the 
variation in Beta function throughout the ring. 

II. MONTE CARLO PROGRAM 

A Monte carlo program was written to generate a gaussian quadrupole random error 
distribution of a know sigma and certain number of quadrupoles. Fig. 1 shows the random 
error distribution using this program for a sigma of 24 units. In Main Ring we have 196 
quadrupoles and we need 128 of them for the FMI. We use this Monte carlo program to gen- 
erate the error distribution for 196 quadrupoles, currently present in the Main Ring, with a 
24 units sigma. Using this distribution Fig 2. the quadrupoles were divided into two sets. All 
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quadrupoles with larger than mean strength were selected as focusing quadrupoles, whereas 
one with smaller strength were placed as defocusing quadrupoles. Similar distributions were 
also generated for 116” quadrupoles. These calculation were done with a MI18 lattice file 
which does not explicitly contains 100” quadrupoles. Hence the number of 84” and 116” 
quadrupoled scaled properly. 

As we had speculated earlier quadrupoles with an error of less than 24 units (one 
sigma) were needed and used in the FM1 simulation. The effective sigma of this simu- 
lated quadrupole distribution is about 7 units. TEAPOT read in these files of quadrupole 
random error distribution for the tracking calculations. 

. III. TRACKING CALCULATIONS 

The study of the required measurement precision of the quadrupole strength was made 
by studying the change in the beta function. We are required to minimize the variation in 
the beta function at injection to control the closed orbit at three local bumps in the lattice 
and also for a smooth slow extraction of 120 GeV beam. Fig. 3 shows the percentage change 
in beta function due to an addition of simulated quadrupole random error. The maximum 
variation of about 3.5% in beta function is only due to the quadrupole strength variation. 
Other magnetic and alignment errors were included in both the calculations. The mean of 
the beta function variation is 6%[2] w h en all the errors are present. Similar number of calls 
to random number generator were made in both cases to eliminate the difference due to 
random number generator. 

In order to study the effect of measurement error, a quadrupole strength measurement 
error of known sigma 2 or 5 or 10 units was randomly superimposed on the simulated random 
error distribution. A cut at 3 sigma was made for the measurement error. This will mainly 
effect the quadrupoles at the two edges of the distributions. 

Fig. 4’5, and 6 shows the change in beta function, i.e. difference in beta function between 
before and after the addition of measurement errors of 2, 5, and 10 units respectively. It 
is clear from these figures that a measurement error adds additional beta function error. A 
measurement error of 10 units corresponds to an additional 2% of beta function variation. 
This is about half of the actual variation due to quadrupole strength variation. It should 
be noted that for some seed this additional variation will have same phase and hence it will 
add to the actual variation, where as for some seed this will have opposite phase and will 
cancel. Here we are concerned with the worst situation and conclude that a measurement 
error of 10 units is large. A measurement error of 5 and 2 units gives a maximum beta 
function variation of about 1% and 0.5% respectively. This will give an additional 25% or 
12% of the beta variations. We know that a measurement accuracy of 2 units is hard to 
achieve. We believe that we should be able to correct additional variations due to 5 units of 
measurement error. We request that quadrupole measurement accuracy of 5 units or better 
should be achieved. 

We have also studied this from a hypothetical point of view where we considered the 
actual quadrupole strength variations to be 5 units. The actual strength variation of 5 
units is not indicated by any data we have on Main Ring quadrupoles. Fig. 7 shows the 


