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1 Introduction 

In a fast ramping machine such as the Main Injector, the eddy currents in- 
duced in the vacuum chamber walls by the time variation of the dipole magnet 
field have a non-negligible effect on field quality. As illustrated in figure 1, the 
problem can be considered as two dimensional; if the driving time varying field 
is vertical, the induced currents are longitudinal. Since the eddy currents are 
themselves time-varying, they induce additional eddy currents. In general, the 
eddy current distribution must be determined by solving the following equation 
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Vx(uVxA)=J-o% (1) 

where v = l/p is the reluctivity, u is the electric conductivity and J is the 
imposed source density (e.g. the current circulating in the magnet windings). 

The term -c$$ b o viously represents the eddy currents. In practice, Equation 
(1) cannot be solved analytically and one must resort to a numerical solution. 
The code PEZD for example, solves (1) using finite element discretization in 
space and finite difference in time. Unfortunately, solving (1) numerically is 
expensive; furthermore, PEPD has limitations which we do not wish to discuss 
her. 

In practice, the vacuum chamber is thin and the material which it is made 
of (stainless steel) possesses a relatively high resistivity. In such a situation, 
the “self-induced” eddy currents are negligible and it is sufficient to compute 
only the eddy currents due to the driving field. An a posteriori check of the 
validity of this approach is provided by the fact that the the field due to the 
eddy currents should be much smaller than the driving field. 

lEquation (1) holds if displacement currents are neglected. This amounts to neglecting 
radiation. 
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Figure 1: hoblem geometry. 
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2 Simplified Theory 

The eddy currents induced by a known driving field B,J can be calculated using 
Maxwell’s equations for the curl and divergence of E 

V-E = 0 (3) 

For the simple geometry illustrated in figure 1, the divergence equation is triv- 
ially satisfied and the curl equation becomes 

(4) 

i.e. 

E,, (x) = 
J 

& dx (5) 

= Boar” (6) 

and 
J, = aBoy x (7) 

since by symmetry, the induced curent must be zero at z = 0. It is easily verified 
that the symmetry forces all the skew multipoles and the normal multipoles of 
order 2(2n + 1) to vanish. In such a situation, all the information about the 
magnetic field inside the vacuum chamber is contained in the behavior of B,, in 
the midplane. Assuming that the magnet core is infinitely permeable and that 
the field lines are vertical across the gap the following expression is obtained for 
Bey (x, 0) by a straightforward application of Ampere’s law [l]. 

~Boyt 2 
Bey(x) = PO~(X - : - :g) MKS 

where u is the conductivity, & is the rate of variation of the main dipole 
field and x, w,g are as shown in figure 1. Separating the dipole and sextupole 
components yields 

b eo = -poz3!d(w2 
9 

q+$) 

b 
uBoyt 

e2 = +@o- 
9 

In these expressions, the signs of the multipoles are consistent with a positive 
main dipole field Boy and a positive time derivative &, . The dipole component 
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of the induced field comes exclusively from the current flowing in the two vertical 
sides of the beam pipe. To the extent that these two sides form a loop, the 
induced dipole must, in accordance with Lentz’s law, oppose any increase in 
the flux through that loop. As a result, the sign of the eddy induced dipole 
must be opposite to that of the the driving. The induced sextupole results from 
the current flowing in the horizontal walls of the chamber. These walls do not 
form a loop linking the driving field; therefore, it is not possible to use a simple 
argument to predict the sign of the sextupole. With 

BOY = 0.205 T 

Boy = 1.725 T/s 
U = 2.13 x lo6 52-l -m-r 
t = 0.0016 m 

9 = 0.05 m 
W = 0.10 m 
h = 0.05 m 

one obtains, in normalized units ( 1 inch = 2.54 cm) 

b el E -36 

b e2 21 +4.7 

3 Analytical Solution 

Expressions (9) and (10) h ave the merit of being explicit in w and g. However, 
the simplified analysis on which they are based does not provide any information 
about the higher order multipoles. The latter are non-zero because of the finite 
width of the beam pipe. More accurate results can be obtained by obtaining an 
a analytic solution for the eddy current induced field and expanding the latter 
in multipoles. This is the approach used by S.Y. Lee [2]. Assuming that the 
chamber is in between two infinitely permeable horizontal boundaries, it easily 
shown using the method of images that the complex field B, + iB, at a point 
z = x + iy produced by a filament at z, is 

B=po; tanh 
1F(% - %Z) r(t. - 2,) 

29 
+ coth 

29 I 

This field can be expanded about the origin 



where we have defined 

S.Y. Lee has tabulated CY, and /3,, up to order 8. His results are reproduced 
here for the reader’s convenience. 

a, = 
8’ tanh (.z - 3 

a%” )I 
(14 

Ir=O 

Pn = 
6’” coth (z - 9) 

a%n (15) 

Lo 

The vacuum chamber can be regarded as a continuous distribution of filaments 

B(z) = g coth 
?T(z - %c) + tanh 

?r(% - %E) 

al 29 1 dxdy (16) 

The multipoles of the total field are simply the sum of the multipoles due to 
each filament 

B,+iA,=$$ JI(X,Y)(% +A) ($)n dxdY 
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Assuming that the current is constant throughout the thickness t of the chamber 
equation (17) becomes, in normalized form: 

where ds is a differential element of path length. 

4 Computer Code 

A code has been written to compute the eddy current multipoles using the 
approach described in the preceding section. In particular, we were interested 
in studying the behavior of the multipoles as a function of the width of the 
chamber. The results are presented in figures 2-5. Although the dipole is very 
well predicted by the simplified expressions, the sextupole is independent of the 
width of the chamber only to the extent that w > 2h. The decapole and the 
14-pole decay rapidly as the width of the chamber increases. 



Bo = 0.205 T 
i, = 1.725 T/s 
u = 2.13 x lo6 0-l -m-l 
t = 0.0016 m 
9 = 0.0508 m 
h = 0.0450 m 

width w dipole 1 sextupole 1 decapole 1 14pole 1 

NOTE: ALL DIMENSIONS IN MKS UNITS. MULTIPOLES IN 
NORMALIZED UNITS x104 @ 2.54 cm = 1 inch. 
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Figure 2: Variation of the induced dipole with the chamber width. 
u = 2.13 x 106. . . 
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Figure 3: Variation of the induced sextupole with the chamber width. 
u = 2.13 x 106. 
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Figure 4: Variation of the induced decapole with the chamber width 
u = 2.13 x 106. 
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